Probabilistic Solution of Ill-Posed Problems in Computational Vision
نویسندگان
چکیده
منابع مشابه
Probabilistic Solution of Ill-Posed Problems in Computational Vision
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملIll-posed problems in thermomechanics
Several thermomechanical models have been proposed from a heuristic point of view. A mathematical analysis should help to clarify the applicability of these models, among those recent thermal or viscoelastic models. Single-phase-lag and dual-phase-lag heat conduction models can be interpreted as formal expansions of delay equations. The delay equations are shown to be ill-posed, as are the form...
متن کاملIterative Solution Methods for Large Linear Discrete Ill-posed Problems
This paper discusses iterative methods for the solution of very large severely ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by errors. Solution methods proposed in the literature employ some form of ltering to reduce the in uence of the error in ...
متن کاملQuadratic Optimization in Ill-Posed Problems
Ill posed quadratic optimization frequently occurs in control and inverse problems and are not covered by the Lax-Milgram-Riesz theory. Typically small changes in the input data can produce very large oscillations on the output. We investigate the conditions under which the minimum value of the cost function is finite and we explore the ‘hidden connection’ between the optimization problem and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 1987
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.1987.10478393